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I. INTRODUCTION

Pr;gress in control of the sensitivity of a system subject
to parameter variationslhas not, in general, kept pace with ad-
vances achieved within the framework of optimal controcl. Consider-
able progress has been made in the design of linearbsystems with
controllied sensitivity to parameter uncertainty. The foundation
work in this class of problems is due to Bode [1], with applications
and extensions to control systems by Horowitz [2,3]. SOmé methods
h;ve been presented in the field of optimal control systems which
are subject to parameter variations over its interval of definition.
A survey of these methods is given by M. Soboral Jr. [47]. Briefly,
they will fall into the following two classes:

1. Performance Sensitivity

Consider any optimal control law which may be implemented either
in an open loop or closed loop structure. What is the change in the
cost index for the open and closed loop structures when parameter
variations are considered [5,6)? Other variations of this idea
exist_in the form of min max values of the cost index over all para-
meter values. In Method 1 it is generally assumed that the parameters
lie in a very small neighborhood of their nominal {fixed) §a1Ues.

2. Trajectory Sensitivity

In this case there is generated’a trajectory in the solution
space, which, in the sense of an augmented giveh cost index, is least
sensitive to parameter wvariations. The cost index is augmented by
a term which is a measure of the trajectory dependence on parameter
variations. This results, in general, in a non-optimal coantrol
for any specific set of parameter values with respect to the unaug-

mented cost index [7].



Kokototovic and Heller1 have adopted an approach which pre-
serves ;he concept of optimality. Their objective is a system
which will be adaptive in the sense that the system will perform
optimally for small parameter variations. However, they assume an
apriori feedback structure, do not examine how small the 'small'
parameter variations must be, and do not have a sensitivity analysis.
They do not show that the adaptive structure can yield a cost which
approaches arbitrary close to the true optimal cost. Also, their
implementation restricts the number of parameters to the dimension
of considered system, (although commenting that this computational
problem may be overcome.)
| This paper presents a method for designing a system which tries
to operate optimally over its range of parameter variations. No
structural constraints are apriori assumed; instead, a general
mathematical formulation of the problem is presented, with the sys-
tem's structural form being a derived result. Given a bounded set of
allowable parameter variations, there is available a computable bound

on the cost index variations.

Symbols
* Cpitimal variables
e Adaptive variables (sometimes referred to as ”approximéte
optimal variables)
n Nominal variables
4 Denotes transpose
<> Non—degenerate‘inmer product

lReceived as a set of notes 1987.



11, Formulation of the Problem
Given the autonomous plant

x(t) = £&x@),u(t);a)  x(t)) = x ,te[t ,T]

where u(t) ch:EI} o= {u(t) = (ul, ceo ur)q, Y admissible ui},
- {(al, cee @m)l aie t=dy-s M } e AcE™, £ : E" x A x 0
- E® continuously.
A performance indexC{u) = \T L (xlu)dt with C(u): ET x O - R.
“to

The optimization problem is to find a U(t) which transfers the state
of the plant from some initial state X(to) =%, toa point in a

given target set S, such that C(u) is minimized.

Define: H(x,p,u;q) = L{Xyu) + p°f(x,u;q) where te [tO,T], pe E".
- a ' (3)
In order that a control u*(t) be optimal it is necessary that 3
a function p*(t) 2
(i) p*(t) and u*x{t) are solutions of the canonical equations
xe(t) = Z(xx(e), pr(t), x6(t) ), X(t) = X, (4)
Pr(E) = - Z(xx(t), p(t),ux(i) (5)
(i1) min H{x*(t),p(t),ult) ] = H[x*(t),p*(£),u*x(t) ] ueqn (6)

(iii) and p(t) satisfies the usual transversality conditions
dictated by the target set [9].

SET OF ADMISSIBLE PARAMETERS

Consider the continuity aspects ¢f a system of first order
O.D.E.'s for the following three cases: |

For xcE"

(1) %x(t) = £, x(t) ), x(t@} = y,y considered to be a parameter,

(E1)%(E) = £(t,%, ), x(t,) = x°, x° fixed, o = (ay, --- » )"

considered to be a parameter vector.



(iii) Combinations of (i) and (ii)
It is known [10] that under the proper reduction routine:
(1) <= > {(ii) <= > (iii)

Moreover, the reductions preserve all the continuity properties
between the classes. Because there is an equivalence between (i),
(ii), and (iii), this paper will comsider class (ii) formulations
only. |

For the sake of completeness, t, may be considered a parameter
in (i) if the latter's dimension is increased by one.

Proof: First convert the nonautonomous nth order O.D.E. to a
{n+1) order autonomous O.D.E,, by letting in+1 (t) =1, x,; &)

t (by virtue of this transformation we shall restrict all future

o’
analysis to autonomous O.D.E.'s which may have originally been given
as a nonautonomous O0.D.E. of class (ii) ). Let z (7) = (Xn+1 (),

x, 0, ooy Xn(T) ) and g (r,x) = (1, £f(r,x) ). Then z (t) =

g (z(r) ), z(te) = (£t ,x)). #

Define: (L to be the set of all admissible parameters such that
A=day | og=a" [ sM , i=1, .o ,m,

For some given M }

Define: A to be a parameter vector,

A = {a = fags o0 5 o0)" | g€l 1 =1, ..o, m}c:Em.

If one considers a plant to be parameterized by a set of q‘s,
neh, then the optimization would have to be performed the cardinal
number of A times. Therefore, one is motivated to seek an extension
of an existing solution into a neighborhood of that solution. Con-
sider an expansion of the Hamiltonian in a truncated Taylom Series
about the nominal Hamiltonian. The iatter corresponds to the optimal
control un(t) which satisfies (6) under the condition ¢ = an. Be~

cause the Hamiltonian function is dependent upon the parameter vector



which represents the existing parameters of the plant. The intro-
duction of the general parameter vector g into the Hamiltonian

shall be accomplished as follows:

Define a new state vector y,. ¥ cElxA < goM
X
: Ay x(t) n m _ o o
where y(t) t&?fj , X{t) eE , g€AcE ,Ay(to) t&éj, where o, is

the initial parameter vector which, without any apriori knowledge
of its value, will be assumed to be an.

Define the nominal Hamiltonian to be: Hn(y(t), p(t), u{t) ) =
H(y (), p"(t), u"(t) ), p(t) ¢ B

Theorem 1. Let H (y,p,u) and all its partial derivatives up through

order k be continuous in a neighborhcod N of (yn, pn5 u?) Then, for

(y, p, u) eN

k-1
— 1 n i
H (v, p, u) =) r<ty=y , p=p, u-u"),v>"H (y,p,u) +
i=0
1 n n n
‘E“Z’ (y=y , p~p , u-u )7V>qu(y’psu) (7)

where Hq(y,p,u) = H (yq, pq, uq), (yqy pq, u?) eN and v is the grad-

q

ient operator [9]. (yq, P, uq) is a point on the line segment con-

necting (y, p, u) eN to (yn, png un) eN, Geometrically: Let N be a

2(n+m)+r3 !!(y_yn, p-—-pn, u—un)tiseeo. (Yqy pqs uq) cco (W)

subset of E
(co denote convex hull}). But N is compact therefore N = «o (N}.

The last right hand term of (7) will be used to generate the
truncated error which is later in the paper. For the moment, call

the truncation error o (ek).



Ti1. NECESSARY CONDITIONS FOR THE MINIMIZATION
OF THE EXTENDED HAMILTONIAN SYSTEM
Consider the case where k = 3, H(y,p,u)€C4[t0,T] in some
neighborhood N, C(u):ST L{x,u)dt and the differential side con-
T

O

straint y = g (y,u), y(t.) = Yo given .

Notation: Let fakﬁ (g’pé“)J = Hnyjpiﬂk; j+1i+h=xk
-3u" 3P~ 3y P2
Then from (4) and (7)

;, = M(y,p,u) = Hn

o s e, + ng(y,p,u)(p—pn)+H§§y,p,u)<y—yn)
+ ng(y,p,U)(u—un)+op(63) (8)
From (5) and (7)
p = - Qﬂé%lgigl = - H; (y,p,u) - H?z(y,p;u)(y—yn) - Hsp(y,p,u)
(p-p™) - Hy2(y,p,u) (u-u™) + o (3) (9)

From (6) and (7), u satisfies

n n n n
H, (v,0,u) = Hy(y,p,u) + Hy (y,p,u) (w-u)+ HY (y,p,0) (y-y") +

n n 3 :

Hyp (7,0, 0) (p=p )+ 0,(e7)= 0 over t ¢ t,,T] (10)
From eguations (7), (8), (9), and (10) the following can be proven:
Lemma 1, The Taylor extension (7) satisfiesC (u) = C(u”) if o = o
over t e [t T].

Proof: Consider the seguence Oy an uniformly, oy € A which induces

. . . Ix 1 3. .
an isomorphic mapping g: y - Yn? Yn -L@nls H{y,p,u)e C fto,T] given.
Under o, y = Hp(ygpr), y (t)) = v, becomesy, = 2(y ) (11)

For p,u assumed known over te[to,T]. Let MF be a solution of (11).

n T
w=yot | almdat,

implies, by Ascecli's theorem, J a subseguence {ﬁn(k)} converges

n
{m } is an equicontinuocus family, bounded, which

uniformly, say to m [10]. But H {y,p,u) is Lipschitizian in y, yeN.



Therefore J a unique solution to (11). Also, p = - Hy(mp(k),p,u),
p(T) =c (12)
Hy(mn(k),p,u) is Lipschitzian in p, peN then H 2 unigque solution

to ﬁ = i(p) for mn, u assumed given; call the unique solution .

For N sufficiently small, such that u” is globally optimal for

q = an’ te[to,T], the implicit function_theorem iﬁplies;a a unique

ueN > u = g (%), %) | (13)

As n(k) - o (ie: an(k) - an) assume the unique solutions to (11),

(12), and (13) are:

i) mn(k) = y"

1) o =p"

iii) wu = " respectively. where (i), (ii) and (iii) uniquely
satisfies a system of coupled equations. #

Lemma 2. The Taylor extension satisfies the inequality Clu*x) <

C(un) under the condition g = g* # a?.
Proof: Suppose not, then d a uBeN a3 C™) < C(u*), But for (y#;p*,u*)

eN, min H(y*,p*,u) = H(y*,p*,u*).

ueQ #

. n n n n _
Define: Ay =y -y , &p = p-p , Au = u-u . Note also Hu(y,p,u) = 0 and

-1
Hﬁp(y,p,u) =0, If Hé% (y,p,u) # 0, then, from 10, solving for Au,
A :
- n n n n n 347
bu = - H_ (y,pgu)fﬁuy(y,p,u)(y~y ) o+ Hup(y,p,u)(p-p )+mu(€~)J (14)

Substituting (10) into (8)
-1
° n i1 Kb n
by = (ﬁpy(y,p,u) - Hyu(vopou) Hy, (v,p0,0) Huy(y,p,u)J (by) -

N -1 -1

n
[HE, (7,p,0) Hy, (y,p,w) Hy (v,p,0) | (8p) - HJ (y,p,w) Hp (7,P,u)

0, (%) + o (), v () = o (15)



Substituting {(10) into (9)
1

e " n n n : . n l
AP = - Lﬁyy(y,p,u) - Hy u (y,p,u) Hy, (y,p,w) Hy (y,p,0) [(ay)

n _uB n - n | n
+ |Hgyopow) - He, (y,p,0) Huu(yap,&) Hyp(y2p,u) | 8p + Hoy

(v,p,0) B 7,558 0, (%) - o (), ap(m) = o (16)
3 N_= N small enough 5 Ou(es), 0p(e3), and oy<e3) are negligible.
Then (15) and (16) can be represented by a linear 2 (n+m) system of

1st order 0.D.E's as follows

AV | = |AGL) L B(E) |AY | = gy 1AY | 14T =0

A AL S 1 T B E LA |AY )1 AT , where the
OGRS A Cop ap ey

matrices A(t), B(t) and C(t) are defined in the obvious way. (17)

Equation (17) is recognized to be a matrix Riccati differential
equation. The solution is given by XK{t) = K'(t), K(t) satisfies
K (£) = A'(E) K(t) + K(t) A(t) - K(t) B(t)K(t) - C(t), K(T) = 0.  (18)
where p(t) = K(t)y(t) (19)
and upon substituting (19) into (14)

M= - Hzﬁ(y,ﬁfu)[ﬂﬁy(ypp,U) +Hy (r,p,0) Kay® § (D oy.ri1]  (20)

1f any of the 2(n;m) solutions of (17) are known in closed form
then reduction technigues may be used to reduce the computational
problems in finding XK(t).[8] The realization, in block diagram

form, is given in Figure 1.

F@ANT} Pt
e Lo, 4l B ” =8

ADAPT I VE . |-
CONTHOLL LR Q§ﬂ“

PARAME 757
ESTINIATOR

Pigure 1



It is assumed (i) that the actual state x(t) can be measured
in.real time, (ii) xn(t) and an can be loaded into the system in
real tim;, and (iii) ¢ can be generated. The question of parameter
generation is discussed later in the paper. It may be noted that
the feedback logp is adaptive and generates a control effort which
is in such a direction as to minimize the cost incurred. This preser-
vation of optimality will be called 'reoptimization".

In order that the adaptive structure be of practical use it
should possess the quality that c®) < c(u™) for a set of para-
meter vectors in some neighborhood on an.
Theorem 2: d some neighborhood Ne’ > for (y,p,u) aNe, and ueeN€
<, u® satisfying (20) over te [t_,T], then C(ux) s c(u").
Proof: Part A; Clu*) < C(ue), let o = g* # o apply Lemma 2. Part B;
c(u®) < c™), suppose not, then 3 N, (ie: ]]y»yn, p-p, u-u” ] se)s
c® > C(un)° But, 3 €, sufficiently small, say €y Ci;OQIi(y,p,u)

2 .
= B’ (y,p,u) + Zj %T<Cy~yn,p~pn,u-un), V>}Hn(y,p,u)9(1mplies truncation

i=1

error approaches zero):

Therefore € = = 0 in which case equality
holds in Part B, By Lemma
1 and e; = 0 implies a=a,
(ie: H(y,p,u)ecé[to,Tj is
not smooth), or

> 0 implies ¢ # o

1f ¢, = O finished, if ¢; > 0, then for (y,p,u) eWN 4 u® = ux 3
~1

1

H(y®,p%,u®) = H{y*,p*,u*), where y°(t) satisfies (y°-y™) = A (%)

v°-y" + B (%-p™), (v°-y" |,y = 0 and pfysatisfies (p%-p") =
(o]

c(t) %=y + D) (P%-p™); (%-p" [ up=0. (ie: y*(t) = y°(t) and

px(t) = p°(t) #
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IV, PARAMETER ESTIMATION

if the plant parameters can be monitored the "reoptimization'
problem is direct. 1In general one cannot hope that all the para-
meters can be monitored. Koktovic and Heller2 consider the follow-

ing variational argument,

Let &i - axi/aak, k=1,...,m, and 8 = oha, if m = n then
Aa = o “sx. This dimensionality restriction can be removed by
using a sufficient number of information bearing variables that are
measurable in the system@3 Suppose we can monitor directl& the vari-
éblés x(t) and u(t), x(t) and u(t) measurable functions, then we can

estimate o as follows:

Consider x(t) monitorable and satisfies x(t) = f(x,u;a*gx(to) =

X u(t) monitorable and ¢ not monitorable over te [tO,T]. Assume
its existence over te [t ~z€,t1]§;[to,T], 4, > 0, tl >t,- (21)
Az
Awe)
;{?/
X

Fig. 2

2See Footnote 1.

Conjecture: The posed estimation problem is: Equivalent to the
estimation of stochastic parameters.

4Monitorab1e implies: can be obtained by direct measurement.



Consider & model of (21) to be x€ = f(xe,ue;qe), xe(t1~ge) =

x({l*ge) over te [ti-ze,tlj. | (22)
For xe(t),,ue(t) measurable, the game is to find an ae 34(22)

models (21) in some sense of an E° norm.° Define x? to be the |

solution of (22) for 4 = a?

1

e ;
To(t) ™ viEiA x; (t), obvicusly x(t;) /] T (t))#g.

, aig A, i = cardinality of A, Define

)
Ao
7
Fig. 3
Let ui demand that tl is a Liebesque point of 4, ¢ measurable (ie:
if X f(y,a,ai)dt =.f(y(t1),c(t1),al)ge + 0{e) (where o(e) is:
, Yty=4€ : . _ , .
"orderiof €"). Define an elementary perturbation of a as follows rizi:
e ¥ n e . '
— {ai on t;-ge st < t;;&° elsewhere }ad ® 7 = A, (23)

Consider @%t) 2 xl(t,s), u(t) ¢  and assumed known by monitoring,
®
and xi (t,e) = x (u,@ni). Now compute QNO) as follows: using (21),

(22), (23), [13]
. t
gim-% [xi(tl,e) - x(tl)j - pim i B 1

- O EGS(E,e), o) - £(x(1),
8.@0 e“‘“ﬂ t—i-ﬁs

5A Lz(tl—ze,tl) norm would be desirable. But the computational

problems become severe.
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® dat = sim 2 {2 (x(tg,0), af) = £lx(t), o¥ [se + 0(e)}

e¢—»o €
=[2Gty ap) - £GxE)), a¥) [ = © (0) (24)
Detine (1) wvrm (t)) = gz xm (ty,0)| g (25)
(ii) Amy = {aﬂi,aﬂi close to a} (26)

Then we can express xm, (t;,€) = x(t;) ~ vm, (tpe + 0(e) for

anieAmc:A, where Xﬁi(t1,3> is a point function (27)

Oy = IMAGE OF Ty, T IN 4, HypEep ane

e BN

Fig. 4 (a,b)

G(ti) is a hypersurface of all perturbed solutions for at, € Aﬁi,

v, (t,) is perpendicular to o(t;) at the point xm (t,) if 0(e) is
sufficiently small and Xﬁi(tl,e) ngTﬁ])“fV%T{ﬁI} (28)
The measure of the error in approximating x(tl) with xﬁi(tl,e)
is || Vﬂi(tl)'!!. Minimizing || vﬁi(tl)[{ for ¢ fixed and sufficiently

small. From (27)(vwi(tl,e))s(f(x(t),q*) - f(x:tl),_ai) g =

(x () = £(x(ty),0])e (29)
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Now, several engineering problems arise from (29) and are: (i) Is
i(tl) monitorable? (ii) What are the dimensionality restriction?
If i(tl) is monitorable the ae which minimizes (29) can be determined
from a direct computation. For any, or all, of the ii(tl),
i=1,...,n, which are not monitorable, éi(tl) must be calculated
from available monitorable system variables. Some_of the methods
which will facilitate these are: |

1) One-sided derivatives for x(t) sufficiently smooth and
ée sufficiently small, 4 propcrtionai tc the apriori smoothness
judgment on x(t).

2) If any element xi(t) of x(t) is not a function of a variable
parameter then ii(t) can be computed directly (ie: ki(t) = g(x(t) ).

3) Mesh refinement methods where an observation interval is
sampled at times ti, tie [t.,tk], i=3, ...; k, ti monotonically

i
increasing. Methods considered:

i) Differentiation of divided differences ri41]
ii) Derivative formulas from difference operations r14)
iii) Central difference formulas ria)
iv) Modified Euler's Formula ri4)

v) Weighted averaging of a sequence of iiftigs%(Q(ti) found
by any method) which will smooth the data and reduce the effecf of
data points which have a large variance from the mean.

Other methods which deserve attention are on-line gradient
téchniques, learning model techniques, and a method of considering
the parameters to belong to a class of piecewise continuous functions,

ae?tto,Tj, is currently being developed.6

ﬁmeP[to,T] implies ¢ = © a.e. but the continuity everywhere of x(t)
is preserved as noted by its integral eguation representation.
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Because the ai's appear linearly in (29) we are interested in
thé‘solﬁtion to an équaticn of the form A(tl}a§'= b(tl) {30)
where bktl) = i(tl) and A(t) is an nxm matrix of rank q. If
q =m = n, the solution of (30) is ag = A?%l)b(t1)° Otherwise, two
general kinds of degeneracy can occur. R, E. Mortensen (18] listed
them as, 1; If b(tl)eR(A(ti) ), then no exact solution is possible.

2; if N(A(tl) ) ¢¢, then a solution, if it exists, is not unique.7
Case (1) might arise if the methods used to compute b(tl) are con-
sidered to be nbisy. Since an exact solution is not possible we
may request a "best least squares fit", Consider a ﬁew set of
equations. ‘K(tl)ai = E(tl) where‘av(ti) = {[--=ii(t1)--=]* }

1 <1 <nand yi = m}, where Kktl) is mxm rank q, m< n, aie AcEm,
g(tl)eEn, and if q = m then a solution exists. If there are more
‘unknowns than equations, then consider the following quadratic
programming problem with an ordered vector cost functional will

be considered:

=

. e m_ . m e n, 2
Write A(tl)ai - b(tl} = @, gqeA<E ;b(tl),ee E alimi - a ||°

<a§—an>' <a§—an> and ]]e[]z = e'e. Put T = min{!]ell & |las -

'ani[}. This means first determine “E > |le]| is minimized.
If b(tl) e R(A(tl) ), then |le|| = 0, otherwise min. ||e|| > 0. 1If
N(&(t;)) = ¢ then tﬁé solution is unique and problem finished. 1I1f
N(A(tl) ) # ¢ then it is possible to minimize not only |[l|e]|| but
llafw an{i also, which results in a unique solution az.

Theorem 3: The solution to min{“e“é’timg“dgil}v where A(ﬁl)

) ) ' :
ai - b(ty) = e, (A(ty), b(ty), o given) is af = A (t))b(ty),

where A is the pseudionverse.

7(1) implies more equations than unknowns. (2} implies more unknowns
than equations.
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Anocther technique which can be utilized for the problem of
more unknpowns than equations, if qz is assumed to be essentially
. . e it '
constant over tp€[ti’tk]C:[€o}T]’ is to define for aigACE s b(tp)

A A _
eEn, m > n, and form the equation A(tm)ai = b(tm) as follows:

- s - .
r e - . n

e = ® ° ﬂ
A(tz+1)“i' b(tg+1) ’ 1"J(zﬂE’E“i":i..’tl«:]’ b(tz+1)€E

el_ | - n
At o )0y = ‘b(tﬁ’_’_v_l) 5t ye180tt D b(tz_w_l)eE
= e |.1l= . \4
A(tg+v)ai | b(ty,—l-v) | ! tz+v€[ti’tk]’ b(tg+v)€E
o Le

b A i ‘
5 Rank @A(tm)] = m, then there exists a unique solution q§ =

Aee ) e )



186

V. FURTHER TOPICS

(1), Error Analysis: It was previocusly noted that for

(y-y ,p-p , u-u™) eN, then the truncation error of (7) is éT

< =y, (p-p), (u-u™), v > HQ(y,p,u> for (y%y",pp™,u%-uMyen. (31)

The truncation error is bounded by sup {(31) For a sufficiently
teft
small neighborhood N the truncation ergor can be made as small as
, T
and C(u) = % B
T

degired.. If x(t) = A(q)x(t) + bu(t),z(0) = X,

(<x,Qx> + <u,Rus) dt; Q= 0, R > o, u(t)eEz,x(t)eEQ,LA(a). =

[@é aiJ and b = !O |, then if we choose n » (y—yn,p—pn,u4;h)s e it
éan be shown that the maximum truncation error is less than %; 3,
Also it can be shown by theorem 2, (189), and that for a sufflclently
small N, that as aﬁw a*, as n -, for a sufficiently large

ny3 ffeg- O] < 1R[] [lyg - v7 ] and || ug-u?] s (] 6(0) ]
[yp=y" []+ [TEE® || || pg =0 || s ({6 || + [EE)|] |[K®)[]]

]iyi-yn]‘ where'G(t) and H(t) are defined by (14). Therefore, if

3 N s {ly-y", p-p", Uwun||s ¢ > the truncation error is sufficiently

small, then we can choose ¢ to satisfy: (1 + [[K{t)|] (L + [[HGE) |+

16 [ 1] y=5™1] = 113G | 1] v=v"]] s €. If [la - o® || is chosen

to be less than some ¢;, €¢; = 0, then |l x - x? |[ £ e ||I(t) i["1~61.
(2). Local Sensitivity: For the conditions given in Theorem 2,

we can be assured of an improvement in the sysfem senéitivity if the

sensitivity measure S(uk) is defined to be S(nk) = C(uk) - C{u*) = 0.(31)

Under these conditions 8(u®) < S(u™), or the variations from the

true optimal cost of the adaptive system is less than, or equal to,

that of the open loop system using u = u” as a control effort.



VI. SUMMARY

This paper has established an adaptive system which was based
on the solufion of a truncated Hamiltonian system of equations.
Thé only restrictions placed on the problem's formulation was that
the Hamiltoﬁian belonged to class Cs[tb;T] and qu(y,p,u)-1¢0,
From the approximate Hamiltonian, {(ie: including bilinear terms),
the adaptive control effort was found to be linear. The édaptive
control was shown to, under certain neighborhood regtrictions,
reoptimize the system. A reduction in the system's sensitivity to
parameter variations, over a system using nominally optimal con-

trol only, was gained by reoptimization.
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